POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name Design of drug carriers

Course

Field of study	Year/Semester
Biomedical engineering	2/3
Area of study (specialization)	Profile of study
Engineering of implants and prosthesis	general academic
Level of study	Course offered in
Second-cycle studies	polish
Form of study	Requirements
full-time	elective

Number of hours

Lecture	Laboratory classes
15	0
Tutorials	Projects/seminars
0	15
Number of credit points	
3	

Other (e.g. online) 0

Lecturers

Responsible for the course/lecturer:

Responsible for the course/lecturer:

e-mail: pruszkowski@gmail.com

dr n. farm. Piotr Ruszkowski

Prerequisites

General knowledge of human biology, anatomy and physiology. Basic knowledge in cell biology and physiology. Materials and biomaterials used in tissue engineering.

Course objective

Obtaining of the knowledge in the area of different types of drug carriers and nano-carriers.

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Course-related learning outcomes

Knowledge

1. The student has knowledge of the basics of pharmacokinetics and pharmacodynamics of thera-peutic agents used in pharmacotherapy

2. The student has knowledge of the methods and tools used in drug design process. Student knows about basic processes of drug delivery throughout the human body

Skills

1. The student is able to communicate using various techniques in the professional environment and other environments (also in other foreign languages) in the field of biomedical engineering and drug therapy

2. Student is able to use the knowledge to combine tissue engineering and drug carriers design

3. Student has the ability to use biomaterial and tissue testing methods in drug carrier design

Social competences

1. Student is able to work in group

2. The student is aware of the basic importance of drug delivery designing and is able to transfer this knowledge to industry and academia

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Lectures: Test covering all the knowledge of the subject, carried out at the end of the elective course

Programme content

Lectures:

- 1. Drug definitions, drug administration routes, pharmacological effect
- 2. Pharmacokinetics of therapeutic agents. Drug penetration through biological membranes
- 3. Drug distribution process
- 4. Controlled drug delivery systems
- 5. Polymers as drug carriers part 1
- 6. Polymers as drug carriers part 2

Projects:

- 1. Lipid carriers
- 2. Metal carriers

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- 3. Nanoparticles as drug carriers
- 4. Biological carriers and vectors
- 5. Biodistribution and imaging in drug delivery process

Teaching methods

- 1. Lecture: Power Point presentation with multimedia examples
- 2. Projects: Practical aspects of drug carriers design. Workshops

Bibliography

Basic

"Drugs – from discovery to approval", Rick Nag, Wiley-Blackwell, 2nd ed. 2008.

Additional

"Drug delivery-engineering principles for drug therapy", W.M. Saltzman, Oxford University Press, 2001

Breakdown of average student's workload

	Hours	ECTS
Total workload	75	3,0
Classes requiring direct contact with the teacher	45	1,8
Student's own work (literature studies, preparation for classes,	30	1,2
preparation for tests, project preparation) ¹		

¹ delete or add other activities as appropriate